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Abstract

Recently web articles have become an increasingly popular medium to share in-
novation, and news across all forms of communication. Typically over time, most
individuals accrue a set of articles they are interested in, and would want to go back
to in the future. While various forms of bookmarking are available, most of the book-
marked articles have common overlapping themes and topics making regular queries
miss important underlying subtleties in the text. One way to circumvent this problem
is to manually label the data into topical categories, but can often prove to be tedious,
again due to the overlapping topics, and the sheer volume of content.

This project explores the ability of techniques in modern Al and their ability to find
underlying structure by analyzing article information and then storing the results as a
vectors of indexed features and the link. The hope is that in the future this system can
be used in conjunction to a search engine to make finding topically relevant content in
the future easier.

1 Introduction

One of the many focuses within the realm of Artificial Intelligence(AlI), and Machine Learn-
ing(ML) is the attempt to find underlying structure that is other wise missed in data. Typ-
ically though, in order to do this large repositories of data need to be available for the Al
and ML to really be practically beneficial. The nuance lies in that finding structure in data
that is labeled is easier, since relationships in the data are more clearly defined, however,
finding large amounts of labeled data is difficult.

Unsupervised learning is the branch of ML which attempts to find structure in data
without having a priori knowledge about the classes to which the data belongs. In essence
unsupervised learning is a method of finding correlations in “input” data without knowing
the “output”, and assuming that similar “inputs” will have similar nature and “outputs”.

One such example of large swaths of data are web articles, which have become a ubiqui-
tous method to sharing interests and ideas between individuals. While key terms, and high
level topics (e.g. economics, technology, news) are typically added, individuals will usually
have many articles in one category with few from others. The issue is then keeping track of,
and managing articles that all fall under a similar over-arching topic.

The discussion of this project will focus on the ability to use simple Al techniques to
find underlying structure in large amounts of unlabeled data, as a means to identify subtle



trends, and topics in web articles, with similar over-arching themes. Below the discussion
will cover different methods of data representation, from simple formulaic constructions, to
learned structure, and compare the advantages and short-comings each. Finally, we will
discuss unfinished components of the project that should be elaborated in the future, to
improve the performance of the work done so far.

2 Background

Unsupervised clustering of text has been a widely studied field. The standard gauge on the
performance for topic extraction in text, has been accuracy of sorting the Reuters classifica-
tion data set. Both Apt. et al. [I] and Masand et al. [2] were early looks at the ability of
machine learning to identify and categorize text data. A major component that grew from
this were different methods of representing data and training models. This research was
strongly tied to the belief that categorization of text should be done independently of the
language. Instead they propose methods to represent text as a vector of features.

2.1 Text-Representations

There exist several different way to represent data, many of which are discussed in Trinkle
[3]. Of those this project will compare strict term frequency (tf), term frequency inverse
document frequency (tf-idf) and also introduce 2 more tf-idf based features: self-taught fre-
quency features (stff), and deep self-taught frequency features (d-stff).

o tf - strict term frequency is often used by search engines to identify relevancy to a
query. tf will convert the text into a vector where each entry represents a term and the
value of the entry represents the raw number of times the term appears in the article.

o tf-idf - term frequency inverse document frequency is a method to penalize terms that
are ubiquitous to the data. It does this by normalizing the value of a vector entry by
the number of documents that term has been seen.

o stff - by attempting to approximate the identity function by compressing and de-
compressing the feature vector, we can then use the compression stage of our neural
network to compress our data’s feature space making the computation of the centroids
in the lower dimensions faster[4].

e d-stff - this is an identical feature representation, except the training model has many
more hidden layer and uses a deep learning neural network to compress and decompress
through multiple layers.

The comparison comes down to show that simply using tf will lose meaningful contextual
data that tf-idf will not because of the nature of the data, and vectorization methods. The
self-taught features are an attempt to perform a Principle Component Analysis (PCA) using
an autoencoder to find a dimensionally smaller mapping of the features, and reduce out the
size of the data vectors. By training a autoencoder, and then clustering the dimensionally



reduced subspace, it will also reduce the amount of computation necessary during the exe-
cution of the actual clustering as there are less features that need to be compared and for
which distances needed to be computed.

Another modification to the text-representation is that in Trinkle, n-gram representation
is listed separately [3], however for this project the decision was made to incorporate the
n-grams as terms in the feature space. The hope is that the n-grams will capture more struc-
ture that would be lost at just evaluating individual terms. For example a 2-gram phrase
may appear less frequently than one or both of the words that appear separately, but the
2-gram phrase could prove to be more telling about the what cluster a document belongs to.

Much of the work in this project will be about the methods to represent the data.
Throughout the progression of this project it has been clear that finding an appropriate
feature space is great importance, and as such has been strongly emphasised in the work
presented.

2.2 Clustering and Classification

Once the data is presentable there should be a means by which the to extract topics that
link the data. The class of Unsupervised learning algorithms that perform this fall into the
realm of clustering. One of the most common methods method presented in the literature
was KMeans, which attempts to assign the data to clusters that a spatial correlated to one-
another.

Another common branch of clustering algorithms are hierarchical-clustering algorithms,
or agglomerative clustering, attempts to use similarity between smaller clusters to combine
them until either there is one all encompassing cluster, or some minimum number of clusters.

Ultimately the idea was to move away from all encompassing terms, therefore many of
the tests focus on KMeans for evaluating performance on text-representation.

It was found, that one of the benefits of the KMeans tf-idf, and KMeans tf clustering
approaches was that it generated concrete “centroids”, for which the arguments could be
sorted. The sorting of the arguments, could then be used to generate the most “important”
frequent features in the centroids. For the other forms of clustering and text representation,
extra steps had to be taken to reconstruct and approximation. Namely the vectors of the
clusters were averaged, and the components with the largest averages within the cluster
were asserted as the clusters "key words”. It should be noted that the reconstruction is an
attempt to make sense of clustering and text representation which is not based on a central
point or where the data is not mapped directly to the original features. Ultimately the hope
is to make the results of the clustering human understandable.

3 Methods

This project was an attempt to compare and contrast different methods of Unsupervised
Learning and data representation for text documents. As such the methods for the project
represent a variety of tests that were utilized to represent the strengths and weaknesses of
each method discussed.The discussion will follow the steps taken and rationales behind why
certain methods and tests were run.



3.1 Data Acquisition and Cleaning

In order to run these tests and make conclusions on the results, a data set that was repre-
sentative of real life situation was necessary. Namely, the constraints were that the articles
should cover a variety of “subtopics” within a common domain.

In order to reflect this 1xer was chosen as a repository of Linux news, source of web-
articles. By utilizing the python library BeautifulSoup4 and looking at the structure of
the 1xer website, 1000 link, and titles were scraped off of the website and stored in a JSON
format.

Once there were links the links were processed using another Python library Newpaper.
The library utilizes Natural-Language Processing (NLP) and a BeautifulSoup4 back-end to
extract information from news articles. It turned out that many of the articles linked, were
in the style of a forum post, which for which the text and title was handled but extracting
meta-data like authors proved to be difficult. The 1000 articles only 919 could actually be
used to train and 82 were unreachable or “unscrapable”. All of these articles can be found
In train_data. json.

Once the data is aquired it needs to be constructed into a vector, for this the NLP toolkit
Python library nltk was utilized. N1tk allows us to define stopwords (i.e. the words that
do not add meaning to the text), like pronouns, conjugation of common verbs, etc. were
defined and are removed from the text. Then n-grams are composed and the tf or tf-idf
vector representation of the texts are computed and constructed in to a matrix.

In the case of stff and d-stff the tf-idf vectors are run through an autoencoder or deep
autoencoder respectively. Using the Keras| library with a Tensorflow backend, 2 nueral net-
works were trained hopin the weights weights on compression will approximate a PCA, and
successfully reduce the dimensionality of your data, without compromising the clustering of
your data. To train the autoencoders, the euclidean distance was minimized between the
input and output. It was found that the convergence of the loss, occurs after approximately
250 epochs of training.

With the data cleaned and prepared, we are now ready to build our models.

3.2 Training

To train our models, first an ideal number of clusters needs to be chosen. The literature
implies many different methods, and 1xer inherently uses 21 different topics to sort their
articles, but this runs the risk of being an over fit. Since the KMeans minimized over
euclidean distance, the goal was to keep adding cluster sizes until the return on investment
per cluster did not add significant improvement on the average distance between the data
and its assigned cluster.


http://lxer.com
https://www.crummy.com/software/BeautifulSoup/
https://pypi.python.org/pypi/newspaper
http://www.nltk.org/
http://keras.io
https://tensorflow.org

Difference In Inertia Per Cluster Added
30

25
20
15

10

Difference in Inertia

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Number of Clusters

Figure 1: Change in inertia as result of adding another cluster centroid

As observed from the figure above, the reutnr on investment flattens out around 7 clus-
ters. For that reason 7 was the number of clusters tested in all of the following simulations.

Reconstructing key terms for the other methods of clustering and the encoded feature
vectors, requires some extra processing of the output, and was omitted for brevity of the
discussion as time was constrained.

4 Results

4.1 Generating Cluster Key Terms

To make sense of the data that was clustered, we wanted some insight into the words and
terms that were most important to the results. To do this for tf, and tf-idf the centroids
that were generated by KMeans could be sorted in order of dominance, and then output.
This produces human understandable outputs that make gauging the overall success of the
clustering algorithm a simpler task.

In principle something similar could be done by remapping the centroids of the autoen-
coded vectors, which is done in comparing_clustering.py with varying degrees of success.



4.2 Example of tf Clusters
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4.3 Example of tf-idf Clusters
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4.4 Cluster Correlation

As observed from the 2 tables above there is overlap between the 2 methods, however in
general the tf key terms are much more broad, and get less at the subtleties of the data. For
example the term “linux” appears highly ranked (top 3) in many of the tf key terms, while
it only shows up top 3 for 1 cluster in the tf-idf cases.

Similarity tests were also run between all of the different models, that tested the corre-
lation (in these tests average overlap) between clusters:

f cluster correlations to tf-idf:

{0: (0, 87.16216216216216), 1: (0, 64.51612903225806) ,
2: (0, 57.03125), 3: (0, 67.12328767123287),

4: (3, 36.36363636363637), 5: (6, 74.19354838709677),
6: (5, 73.91304347826087)}

autoencoder correlation to tf-idf:

{0: (0, 25.0), 1: (2, 24.926686217008797),

2: (4, 35.15625), 3: (4, 28.767123287671232),

4: (3, 42.97520661157025), 5: (2, 50.0),

6: (0, 58.69565217391305)}

deep autoencoder correlation to tf-idf:

{0: (0, 32.432432432432435), 1: (1, 26.686217008797655),
2: (6, 50.0), 3: (4, 23.28767123287671),

4: (5, 48.760330578512395), 5: (3, 62.903225806451616),
6: (2, 60.869565217391305) }

agglomerative correlation to kmeans tf-idf:

{0: (1, 83.10810810810811), 1: (0, 79.17888563049853),
2: (4, 81.25), 3: (2, 47.945205479452056) ,

4: (0, 47.93388429752066), 5: (6, 90.3225806451613),

6: (5, 86.95652173913044) }

The labels in the dictionaries above are the cluster number and the entries represent the
maximum correlated cluster for the method compared, and the percent overlap (i.e. what
percentage of the texts from that cluster ended up in the entry’s cluster). Its clear from the
data that the autoencoded representation have very weak correlation to the tf-idf mappings
showing weak performance on the resulting clusters most likely. In general agglomerative and
tf were respectively similar to the KMeans, but previous tests suggested that KMeans was
not stable on the data, as there would often be articles that moved classifications between
different fits of the data, this suggests that there are many “edge” cases and that 7 is not in
fact the most optimal k£ value, or that the data has many outliers that do not fit well with
the rest of the data.



5 Conclusion

It’s clear that tf-idf and KMeans produce tangible results as observed by the cluster keywords.
The conclusion is that it seems like the data is too scarce for a true manifolding technique
to prove useful, but dense enough that simple tf vector representations are not enough to
represent the output. This is seen in the overlap results seen in the correlation test, as the
dimensionally reduced vectors map maintain clustering poorly, and the clustering resulting
clusters are moved around a great deal.

6 Future Work

In the future it seems clear that larger models should be examined, it seems that 1000
articles is too scarce to truly understand the structure lying within the data. It would also
be interesting take a look at some more modern clustering algorithms. Primarily they are:

6.1 Probabilistic Mixture Models

One innovation that warrants a closer look is the attempt to remove outliers, and find
overlapping classifications for border cases. Since there are many edge cases, it would be
better to look at a Gaussian Mixture Model to better understand the classification of the
text examined.

Additionally adding something analogous to The Chinese Restaurant Method (CRM)
might also find a more optimum solution to the classifications. CRM is an intelligent way
using EM to determine whether or not a new cluster is necessary to fit the data to. This
will converge on an optimal Km

6.2 Embedded Clustering Schemes

Namely Spectral Clustering, and Deep Embedded Clustering [5] are recent proven methods
to improve Unsupervised Learning by clustering, yielding much stronger results over the
KMeans and Agglomerative algorithms for

6.3 Down Stream Classification

Early methods were attempted however there some inabilities met when trying to vectorize
and map terms previously unseen by the vectorizer and KMeans caused errors that were
ultimately unresolved due to time constraints. In the future though a downstream classifier
which can compare be used to compare methods, and see not only how they compare with
one another but also how they compare with human intuition about the data.

Once the clusters were identified, the model can be used to get human input for another
subset of articles to label them into the cluster categories that were generated by the KMeans
model and then compare them to the predicted outputs of the model.
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