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Abstract

Probabilistic Language Recognizers are
a popular way to statstically model lan-
guages. While varying in the underlying
mechanism, each recongizer attempts to
represent the set of strings accepted by a
language and the probability of that string.
Finding the weighted intersection of 2 lan-
guages implies finding all (if any) strings
that exist in the set of both languages pre-
sented. The discussion will examine in
particular current work on the closure of 2
different types of Probabilistic Language
Recognizers.

1 Introduction

A fundamental part of Natural Language Process-
ing, is the availability of language recongnizers.
Typically learned from collecting data, language
recongizers in their most basic form are a machine
that determines whether an observed sequence of
tokens belongs to a language or not. Throughout
the study of the domain many different architec-
tures have been discovered, and used for different
problems with varying conveniences and proper-
ties.

Two of these popular Language Reconizers are
Probabilistic Finite State Acceptors and Recurrent
Neural Networks (RNNs). While these are popu-
lar forms of representing languages, and though
they are defined as mathematical formalisms,
some of their properties are unknown. In partic-
ular it is unknown whether or not these 2 classes
are closed under intersection.

In more intuitive terms, it is common place to
intersect languages, evaluating the sequences that
belong only to all of the intersected languages.
Closure under the intersection implies that given 2
machines of the same class representing different

languages, can we construct a third machine of the
same class, that recognizes only the overlapping
sequences from the original languages. The dis-
cussion will be theoretically guided, and explore
some new work into the determining this property.

2 Background

2.1 Definitions

We begin by formally defining the existance of an
alphabet, A, from which we can sample tokens
to construct a string, s = [a;, ..., ay), such that
Vi € [l,...,n], a; € A. We say that S is the set
of all possible strings that are constructable with a
given alphabet. A language, L, is a collection of
strings from S, (L C 5).

2.2 Finite State Recognizers

A Weighted Finite State Acceptor/Recognizer
(WFSA) is a network used to represent a “lan-
guage” L, such that,

W(s) = {;+

s¢ L
s€eL

If a string, s € L, then W maps it to a positive
real number that represents the “weight” of the
string.

WESAs are often represented as a network of
nodes and transitions which accept and reject to-
kens from parameterized in with the following tu-

ple (Q,T,E,u):
e () - aset of states

o T = [T,,,...Ty,] - set of weighted transi-
tions, such that Vg € Q,T; € T represents
the set of all edges from state ¢. Furthermore

Vit,w) €Ty, txqg— QuweRT te A



L.e. t represents a token which, when crossed
with a state g, maps to the next state, and
w represents the weight assigned to the that
transtion

e F C (@ - set of states that are terminal, mean-
ing that if a strings tokens follow a path to
stateq € F,thens € L

e | € () - initial entry into the WFSA

It is said that there is a path,, 7; ;, between states
q; and g; if there exists some sequece of transitions
that can be followed from state ¢; to g;. If the
string s € L then there is a path 74 through the
WESA that assigned a weight w to the string by;

I w»

Y(t,w)€ETs

w(r) =

A special class of WFSA, called Probabilistic
Finite State Acceptors/Recognizers (PFSA), is a
WESA with 2 added constraints:

o All terminal states cannot have any outgoing
edges

e The sum of the weights outgoing any state ¢
must strictly be 1

2.3 Neural Network Recognizers

An RNN, R is said to map these strings to a
“weight”, formally, that is to say that: Vs € S, R :
s + [0, 1]. More specifically, a single-layer RNN
is paramtereized by, (N, hy,©,®, B,V C, o),
representing:

e N which is the number of states, sometimes
called “neurons”

e h the intial output of the activation layer.

e O, the “input” weight matrix of size, N X |.A]
o &, the transition weight matrix of size, N x N
e B, abias vector of size N

e U, the output weight matirx of size, |A| x N
e (), abias vector of size |A|

e 0, an activation function. (E.g. Rectified Lin-
ear Unit (ReLU), Sigmoid, Identity)

Similary to PFSAs, tokens of the string s =
[a1,...,ay,] are iteratively fed as input into a neu-
ral network which for which a compounding prod-
uct value is computed representing the likelihood
that that string exists with the language L. Spc-
cifically this is done by following the dynamics as
described below:

e The “hidden” state evolutions of the RNN

h; = U(@ai + ®h;—1 + B)

e The unsmoothed token prediction y;:
yi = VYh; +

e The “softmax”-normalized token prediction:

eyi, 1
1

pi = SOftmaX(yi) = T
Z]:O eyzvj ey’h |.A|
where y; ; is the j-th element of the y; ele-
ment.

o Finally, the RNN output “weight” assigned to
a string of length n:

P(S) = HpiXi
1=0

where y; returns the index for p; which is as-
sociated with x;

2.4 Closure Under Intersection

A class of functions, can be thought of as a set
of functions (sets) that share certain characteristics
(e.g. the set of all PESAs and the set of all RNNss,
). When refering to closure under an operation,
it generally refers to the idea that given a set and
some arbitrary operation *, when the operation is
applied to members of the set, the output of the
operation is a member of the same set. If we imag-
ine functions as abstract representations of sets,
then the intersection of sets (and thus the func-
tions used to represent them) is the collection of
overlapping members that belong to all sets being
intersected. The weighted intersection of mem-
bers from a class, is a membership intersection be-
tween weighted sets (i.e. sets where members also
have a weight assigned to them). The resulting set
members are also weighted proportionally to the
weights of the original operands.



The discussion presented will circulate around
the proof of closure under weighted intersection
for the 2 different classes of PFSAs and RNNs.
In the following sections we will exmine the exact
definition of the closure property for the classes, as
well as methods of construction and proofs about
the property for each.

3 Probabilistic Finite State Acceptors

Using the definition in §2.2 the PFSA, we define
the objective is answer the following questions:

e Given arbitrarily many PFSAs, Pi,..., Py,
does there exist a PESA, Piersect, Such that:

-Pintersect(s) = Pl(S) N PQ(S) Nn...N P,
_ I[Z, Pis)
ES’ES H;nzl Pi(sl)

e Does there exist an algorithm for construc-
tion of Pintersect?

We begin by demonstrating certain facts about PF-
SAs.

Lemma 1. Given a PFSA, P, parameterized by,

(Q,T,E,uL):

Z P(s)=1

VseS
Upholding this propoerty is the definition of con-
sistent.

Proof. We will begin with the construction of a
singleton PFSA. We define the M-singleton by
taking an M-sized (M > 1) set of terminal states,
E, and then defining Q = {¢} U E. (i.e. the PFSA
has exactly one non-terminal state, therefore all
transistion must go to a terminal state).

It is clear to see that through the construction
of this M-singleton, and the definitions presented
above for consistency, and PFSAs that the M-
singleton must be consistent.

Next let us define a strictly-forward PFSA (SF-
PFSA), in this case the edges from a state ¢ to
transition to other states ¢’ such that there exists
no paths 7,/ , (i.e. no loops are permitted). From
this construction, it logically follows that the net-
work must contain within it at least one node that
when isolated from the rest of the network must
be a singleton. If there is not one, this would im-
ply that there exists a state that must point “back-
wards” which therefore breaks our construction of
the SF-PFSA.

Furthermore, we observe that given state ¢
with n-many edges to k-many M-singleton states
¢}, ... q),]), the consistency is preserved since if
the edges go to an M-singleton they are “locally”
consistent, and paths exiting ¢ must be themselves
“locally” consistent as well to follow the construc-
tion of a PFSA.

More rigorously, since for all pre-terminal
states which are M-singleton, S,:

Z S(s)=1
VseS

then we know that for nodes that point strictly to
terminal states and pre-terminal states are them-
selves consistent, since

> "

Y(t,w)eTy

iftxqg— FE,

if ¢ X g — pre-terminal state

Recursively, we can observe that this relationship
allows us to show consistency for arbitrarily long
SF-PFSA.

Finally let us imagine an uncountably-infinitely
long SF-PESA (since there is no longer a finite
number of states we refer to it as a infinite strictly
forward probabilistic state acceptor (ISFP-SA)).
Above we showed that through recursion it must
also be consistent. Now notice that a loop can
be deconstructed and represented as an ISFP-SA
with a particular pattern representing the states and
transitions found in the loop. Notice that loops
will also now preserve consistency, and as such we
have removed any requirements on the transtions
that are in our PFSA.

Therefore all PESAs are consistent. This con-
cludes the proof. O

Corollary 1.1. All PFSAs can be represented as a
strictly forward structure.

Now that we know that PFSAs are stricly con-
sistent, and that they can be taken under when
treated under as a WFSA a weighted intersection
can be taken such that given 2 PFSAs P4 and Pp
theres is

W'(s) = Pa(s)Pp(s)

which can be deterministically constructed. (?)
From this fact the following lemma is derived:



Lemma 2 (Weighted Intersection of PFSAs are
finitely bounded). Given WFSA W, constructed
as the weighted intersection of 2 PFSAs P4 and
Ppg, such that:

W (s) = Pa(s)Pp(s)

then,

ZW(S) <1

seS

Proof. Following Lemma 1, that PFSAs are con-
sistent by definition, then it holds that,

D Pa(s) =1

seS

> Py(s) =1

seS

and,

we also assume that,
Vs € S, Pa(s),Pg(s) >0
From this it follows that,
Vs1,82 € S, Pa(s1)Pp(s2) >0
Knowing this, the following holds true,

(3 Pals)) (X Pals) =1

seS seS
= (Pa(s1)+Pa(s2)+...)(Pp(s1)+Pp(s2)+...)
= (Pa(s1)Pp(s1) + Pa(s1)Pp(s2) + ...
+Pa(s2)Pp(s1) + Pa(s2)Pp(s2) + ...

= ZPA(s)PB(s) + Z Py(s1)Pp(s2)

seS s1#£s2€S
2D Pa(s)Pp(s)=1— > Pa(s1)Pp(s2)
seS $17#£82€S
And since,

Z PA(Sl)PB(SQ) >0
Sl;éSQGS

then it holds that,
> Pa(s)Pp(s) <1
sES
this implies that the
> W(s)<1
seES

and that the sum is finitely bounded. O

At this point by taking the “weighted intersec-
tion” of 2 PFSAs, we have shown that we are able
to extract a structure for a WESA, and that the
WESA has a finite sum for all paths recognized by
the weighted intersection. From this we can log-
ically extract that each of “sub-graphs” also must
have a finite sum.

Next by applying this logical extension, we can
demonstrate that PESAs must be closed under in-
tersection:

Theorem 1 (Closure Under Intersection). Given
2 PFSAs A and B which assign probabilities Pa
and Pp to strings s € S it is possible to construct
PFSA C such that:

Pa(s)Pp(s)
dves Pa(s')Pa(s)
Proof. Let there be a WFSA W with finite sum
K and let, K; represent the finite sum of all paths

extending from state, g;. (K, = K). By extending
the method we found in Lemma 1, we can show

that
K= Y

Po(s) =

wk’K(Qj Xtg)

where K; = 1if ¢; is terminal.

By making a copy of W and P we want to find
T such that the resulting graph is a PFSA. For tran-
sitions all T; € T" we construct TJ with all of the
same transitions and compute the weights in the
following manner:

Wt wp) € Ty oy = Ewxte)
K;

We can see that by construction that the new
edges’ weight must sum to 1, and this will by con-
struction meet that requirement that we therefore
have built a PFSA

Now given string s € Lyy, let us to follow an
arbitrary path 7, ;, such that g, € E. We can see
that following a path

P(s)=w(mr) = [J[ @
(tj,uA)j)Gf'L,k
w1 K (x4y)

W2 K (g, xt) Wk

= (TR ()
_ H(tj,wj)em Wy

- K

~ W(s)

K



This implies that given 2 PFSAs A and B for
which we can take the weighted intersection of,
we can construct a WFSA W (s) = Pa(s)Pg(s)
and applying by applying Lemma 2 and the above
weight assignment we can show that we can con-
struct PFSA P such that

P4(s)Pp(s)

where K is some scalar value?

We try to tackle this problem by first showing
that the desired output is even constructable by
some softmax function

Lemma 3 (Composition of Softmax Functions).
Given vectors r4 = softmax(d) and rp =

-,

softmax(b) it is possible to construct r¢ =

Pe(s) = ZS’GS P4(s")Pg(0) softmax(c) such that
0 _ DA,iPB,i
re,i = > o
In the Supplemental Materials we provide the vj "AGTB, ]
method and algorithm for computing the weights and
of the PFSA in more detail. ’ R
c=a+b
4 Recurrent Neural Networks
Proof.
Similarly to objective presented in §3, we with to
find now identify the existance and find the inter- (Ze‘”’e a5 )( ebi )
. . q
section of Probabilistic Language Models that are T4,iPBi AL — 2vg eb_
represented by RNNG: 2 i TA B, ZV]’(Z\?TJE(M” ) Zssjebs )
e Given RNN A and B, can the existance of _ e%iebi
RNN C be determined such that, ng' e ebj
RA(S)RB(S)) eitbi
Ro(s) = Ra(s)NRp(s) = S
(s) (s) (s) Y ses Ba(s)Rp(s") Zvj' eit+b;

?

e Does there exist a method to deterministi-
cally constructing this RNN if it is deter-
mined to exist?

These questions have proven to be highly non-
trivial, so to approach them we will begin with a
relaxed definition of the problem.

4.1 Nonconsistent Weighted Intersection

One of the difficulties on showing the intersection
of RNNs is the final layer of the system. This
is because softmax is not an invertible function.
More specifically given a vector, y = softmax(z),
there is no way to effectively reconstruct z., be-
cause softmax is invariant to translational constant
factors. Explicitly,

1 T k

T2 T2 k
softmax( ) =softmax(| . |+ |.]|)

_m Tm k

So we begin with a modified question:
Does there exist RNN R¢ such that, given RNN A

and B:
RC(S) — RA(S)fB(S))

-,

. ro = softmax(a + b)
O

Applying Lemma 3 implies that given RNN R,
and Ry, parameterized by

<Na7 ha,07 ®a7 (I)av Baa \I]a, Caa U>
and,
<Nbv hb,Ov ®b7 (plh Bb7 \Ilb) Cba U>

respectively, where everything except the activa-
tion functions can be unique, an RNN R,

<NC7 hc,O» 687 (pm B07 \1107 CCa U>

is constructable with the following properties:



This is because we have effectively encoded
both of our original neural networks into the pa-
rameters of R., and now its compounded product
is

e(yA,i,xi)e(yB,i,xi)

RC(S) = H Ey- . eWaij)eWB,ij)
1,7 3

Ya;Es

This is close to our desired consistent vector, in
that the output of the softmax is a vector that points
to in the correct direction as our desired vector,
however it is off by some linear scale. Unfortu-
nately we cannot really control this linear scale
and therefore this is not a construction that seems
to help us further. The evidence points to the
complexity arising from the non-linear and non-
invertible nature of the softmax.

4.2 Consistent Weighted Intersection

A corollary of Lemma 3.2 in Chen et al. (2017), is
that RNNs can be constructed to have unbounded
sums over the set of strings s € S. Logically it fol-
lows that this would imply that simply construct-
ing an RNN R’ such that given some R:

R(s)

R = /o)

is not always possible.

In contrast, a corollary of Lemma 2 implies that

the intersection of 2 consistent RNNs would also
have a finitely bounded sum. This implies that
there needs to be an RNN that can be used to rep-
resent a linear scaling of the weighted intersection.
However applying this linear scale is not trivial
due to he compounding product overtime and the
non-linearity of the softmax and o activation func-
tions. In generanl thought the results of Kilian
and Siegelmann (1993) and Seigelmann and Son-
tag (1995) on the general power of RNNs leads us
the following conjecture.
Conjecture 1. Given 2 consistent RNNs, there ex-
ists a third RNN which represents the consistent
weighted intersection. This would imply that con-
sistent RNNs are closed under intersection

While we believe that the consistent RNN is
closed under intersection, the result of Theorem
3.4 Chen et al. (2017) would imply that finding the
scaling factor is not possible, otherwise implying
a contradiction on the decidability of consistency.
This leads us to propose the following:
Conjecture 2. There does not exist a deterministic
method to construct the weighted intersection of 2
consistent RNNs.

5 Conclusions

We have shown that PFSAs are closed under inter-
section, their structure and behavior allow for the
definitive manipulation and exploration. The de-
cidability and boundedness over many of the pre-
liminary properties of PFSAs allow us to observe,
comment, and deduct more complex functional-
ity of the structure. In comparison,RNNs sacri-
fice simplicity and boundedness in return for being
computationally more powerful. As a result we
have demonstrated that the the very notion of in-
tersection is highly dependant on the definition we
present, and the liberties in the architecture we al-
low. Furthermore, there seem to exist clear bound-
aries to the determinism of closure of RNNs under
intersection.

It is believed that the result of Theorem 1 on
PFSA closure under intersection is novel, and that
the intermediate Lemmas can prove to be func-
tionally useful in the continued research and use
of WESAs and PFSAs are probabilistic language
recognizers.

The contributions on the intersection of RNNss,
has spoken to the continued complexity in under-
standing fundamental properties. However with
the conjectures, and continued contributions being
made in the field we believe a more complete proof
on the decidability of these properties is available.

6 Future Work

In general there is a strong desire to better de-
scribe the computability class of RNNs or catego-
rize RNNs into relevant sub-categories that would
make fundamental properties more approachable
to discovery. In particular recent work by Weiss
et al. (2017) and Frosst and Hinton (2017) have
demonstrated the ability to distill information
from neural networks into finite state graphs and
transitions. It seems likely that there are fun-
damental properties of the neural structures that
makes it possible to distill these graphs from them.
An evaluation of these properties may yield a
deeper understanding on the neural networks that
we use to represent languages.
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Supplemental Material

Recall that in §3 we provided a proof that there
must exist a PFSA that represents the desired prop-
erty. We noticed then that the sum through par-
ticular sub-graph at a node can be represented as
a weighted sum of the sum of through the sub-
graphs of all nodes reachable.

With this in mind if we allow z; to represent the
sum of the subgraph starting at ¢; ¢ E and

I

Tm

represent a column vector of the sums of non-
terminal states.
We can show that,

Ti = D Wrgeat Y)W

V(t,w)GTi‘inth V(t,w)ETi|int€E
X E WL (g;xt) = E w
V(t,w)ET;|qi xt¢FE V(t,w)€ET;|q xteEE

This relationship in conjunction with Theorem 1
implies that there at least one solution and that
there is a linear system of equations which is solv-
able.

Algorithm 1 shows an algorithm that constructs
and solves this system of linear equations.

Algorithm 1 Normalization of Edge Weights for
Finitely-Bounded WFSAs

Let Q represent the non-terminal state and |Q| rep-
resents its size

function NORMALIZE_GRAP H,WEIGHTS(Q, ET)
O « oleIxlQl
for ¢; € @ do
for (t,w) € T, do
qj < (@i x 1)
if g; € E then
Mi <= pi +w
else
Qi Qi j+w
end if
end for
end for
K « (I —Q)~'u > This solves the set of
linear equations
T+ {0}
for ¢; € Q) do
T; + {0}
for (¢t,w) € T;, do
qj < (g x 1)
W = B
T; < Ty U {(t, )}
end for
T« TuT;
end for
return 7'
end function
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